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Josephson-Junction  Mixer  Analysis  Using 
Frequency-Conversion  and  Noise- 

Correlation  Matrices 
YUAN TAUR 

Abstract-A  complete characterization  and optimization have been 
carried out for an externally pumped Josephson-junction mixer. A 
noise-driven  nonlinear  pump equation is f i s t  solved  in  the  time do- 
main on a computer  in order to obtain a conversion matrix and noise- 
correlation  matrix for  the small-signal  current  and voltage. A set  of 
linear circuit  equations  formed  by  the matrices is  then  solved in the 
frequency domain  for the mixer noise temperature  and conversion 
efficiency.  Finally,  optimization is  made with  respect to circuit, bias, 
and junction parameters to find  the  ultimate  theoretical performance. 

I. INTRODUCTION 

R ECENT experimental work has shown that  point-contact 
Josephson junctions can make low-noise millimeter-wave 

mixers with high conversion efficiency (or  gain) [l]   -[3].  
However, the observed noise  is usually one to two orders of 
magnitude larger than thermal noise at  the  bath  temperature. 
Although the excess noise has been attributed to a nonlinear 
process [4], [5] , the conversion and noise correlation charac- 
teristics of a Josephson mixer are still not well understood 
quantitatively. This  is partly because the nonlinear Josephson 
equations are difficult to analyze in the case of mixing. In 
addition,  the high-order effect of noise in the  junction plays 
such an  important role that  the nonlinear equation must be 
solved with  a  fluctuating term for thermal noise.  This is in 
contrast to a classical mixer analysis [6] in which noise  is 
simply treated as a small  signal. 

The first computer calculation on a Josephson mixer by 
Auracher and Van  Duzer [7] predicted conversion gain from 
the  modulation  of I-V curve by an RF signal.  However, the 
analysis was carried out for  a  current source configuration 
without  a  treatment of the nonlinear interactions between the 
mixer and its RF circuit. A subsequent generalization of the 
calculation [8] took the finite RF source impedance into 
account to arrive at coupling figures for conversion efficiency. 
But the approach lacked a noise analysis and was limited only 
to broad-band resistive circuits. A better understanding of the 
Josephson mixer was obtained  from an electronic analog com- 
puter which modeled the narrow-band RF circuit more realis- 
tically [9], [ 101 . With a proper simulation of thermal noise, 
the analog computer can be used to evaluate mixer noise 
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temperature given a set of parameters. However,  analog  simula- 
tion is inherently limited to one special  case at  a  time, making 
it very tedious to cover all the parameter values of interest. 
Moreover,  since a general formulation does not exist for  the 
nonlinear conversion  process, a systematic search for  the 
optimum  condition  cannot be carried out. 

In this paper, we present a complete analysis to evaluate and 
optimize the noise temperature  of  a Josephson-junction mixer. 
The nonlinear Josephson equation, including both a large RF 
drive and  a noise term, is first solved in the time domain using 
a digital computer. The results along with their fluctuations 
can be used to derive a small-signal impedance matrix and a 
noise-correlation matrix  in  the frequency domain. Following 
a general mixer analysis,  we then solve a linear circuit equation 
for conversion efficiency and noise temperature to find  out 
the  optimum RF impedance. In this method, all the effects of 
up-conversion, image-conversion, and noise interaction are in- 
cluded. Furthermore,  the advantage of image rejection (single- 
sideband mixer) can  be  easily investigated in the frequency- 
domain analysis. The computation is carried out for  a variety 
of junction  and bias parameters to determine the  ultimate 
performance limits of the Josephson mixer. 

11. CIRCUIT MODEL 
Since the experimental I- Vcurves of a low-capacitance point- 

contact Josephson junction are best described by the resistively 
shunted  junction (RSJ) model [ 111, this formalism is used in 
our mixer analysis. In the RSJ model, a resistor of constant 
resistance R accounts for  the quasi-particle current,  and is in 
parallel with an ideal Josephson element which accounts for 
the superconducting pair current, as shown in the  box of 
Fig. 1. The electrical characteristics of an ideal Josephson ele- 
ment are described by  the Josephson relations [ 121 

&(t) = I, sin @(t)  (1 1 
R d  
2e dt  

V(t) = - - @(t). 

Here @(t) is the superconducting phase difference across the 
junction, and IC is a  constant equal to the maximum super- 
current of the  junction. Also shown in Fig. 1 is a current 
source representing Johnson noise  having  an autocorrelation 
function 

<61n(t)61n(t’)) = - 6 ( t  - t’) 
2kT 
R 
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EQUIVALENT  CIRCUIT 
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Fig. 1. Equivalent circuit of a Josephson-junction mixer with large- 
signal  sources to' the left and  small-signal circuits to the right of the 
junction box. All the external circuits are  assumed to be connected 
to the junction terminals but at different frequencies. The ac  current 
and voltage are expressed in complex half amplitudes. 

where T is the  ambient  temperature. Such a noise term must 
be included in the nonlinear pump equation as thermal noise 
cannot be regarded as a small  signal. 

If the  junction is  driven by  a dc source and a local oscillator 
(LO) at frequency wLo as shown to the  left of Fig. 1 ,  the 
pump  equation can  be written in time domain as 

? i d  
2eR d t  
-_ $(t) t IC sin $(t) = Idc t (ILoe iwLot Ifoe-iwLot) 

+ 61n(t). (4) 

Here we  use a complex notation for all ac amplitudes such as 
{V&O exp (jwLOt) -t V t L 0  exp(-jwLOt)} for  the LO gener- 
ator voltage, and {IL0 exp (jwLot) t I& exp (-jwLot)}for 
the LO current,  etc.  Equation (4) is  valid under the assump- 
tion  that  the embedding circuit has a very high impedance at 
all frequencies except near dc  and WLO, so that no external 
current can be generated at the harmonics of the LO fre- 
quency: 2wL0, 3oLo,4wLo, * , etc. This assumption has 
been verified from measurements on a scaled point-contact 
mixer model [13] . However, the impedance of the LO source 
is finite, which implies that  the LO drive  is not a  constant 
current source. For a given V S , ~ ~ ,  the magnitude of ILo 
changes with dc bias, and the static I-V curve  deviates  signifi- 
cantly from that previously published for  a  constant  current 
source [ l  11 . 

One can choose a time origin such that ILO is real, and ex- 
press (4) in terms of dimensionless  variables  as follows: 

d - $(T) t sin @(T) = idc t 2iL0 cos QL0r t 6in(T) 
dr (5) 

where idc = Idc/Ic, i L 0  = ILo/Ic, and 6in = 81n/Ic are nor- 
malized currents; T = (2eRlJh) t is normalized time; and 
QLo =EwLo/2eRIc is normalized LO frequency. A factor of 
two arises in  the LO current due to the half-amplitude nota- 
tion used here. The noise relationship becomes 

( 6 i n ( T ) 6 i n ( T ' ) )  = 2r6(7 - T ' )  (6)  

where r = 2ekT/hIc is a dimensionless  noise parameter, equal 
to the thermal energy kT divided by  the Josephson coupling 
energy 3IC/2e. In dimensionless units, the  junction is charm 
terized by  the parameters QLo and r; while the bias condi- 

tions are represented by the parameters idc and iLo. Both 
QLo and F are important  factors governing the mixer perfor- 
mance. It is desirable to  keep QLO < 1 since most of the RF 
current would then  interact  with  the inductive Josephson ele- 
ment. The condition r < 1 should also be satisfied, otherwise 
the Josephson nonlinearity would be smeared out  by noise 
saturation. The region of interest in our analysis is, therefore, 
restricted to QL0 < 1 and r < 1 ,  which  are satisfied in most 
experimental situations. 

111. METHOD OF COMPUTATION AND I-VCURVES 
Given a  junction and its bias, the pump equation  (5) can be 

solved numerically for Q,(T) on a digital computer (IBM 360/ 
95). A good choice for  the integration step is H =  AT = 0.25. 
No discrepancy is found on a  numericaltestat half the  step size. 
The noise 6in(7) is generated by calling a Gaussian-distributed 
(approximately) random number at each step of integration. 
The random numbers have a zero mean and a variance 

o2 = 2r/H (7) 

depending on the  step size.  Due to discrete sampling, their 
spectrum is frequency independent (white) only below Qn = 
n/H(>>l). However, the  junction noise beyond the cutoff 
does not have any significant effect on the mixer behavior, 
as has been confirmed in the half-step test. 

The normalized junction voltage U ( T )  = V(t)/RIc = d$(T)/dT 
can  be evaluated once Q, is  solved  as a  function of T .  It can 
be expressed in the frequency domain by taking a Fourier 
transform over a period P equal to ten LO cycles, i.e., P =  

i%oT uzoe-inLor 
10(2n/nLo) 

u(7) = udc (ULOe 1 
t (higher frequency components) (8) 

where Udc = Vdc/RIc is  real but u L 0  = VLO/RI, is complex 
because there is a phase difference between VLo and ILo. 
Voltage components at harmonic frequencies can be ignored 
since they  do not induce external currents. Both Udc and uLo 
contain  fluctuations due to the noise at low frequency and 
QLO 

udc = (udc) t 6 udc (9) 

ULO = (ULO) + 6ULO. ( 1  0) 

In order to obtain the average as well  as the spectral density 
of fluctuation. the Fourier transform is  reDeated to vield 

curacy better than 5percent. Then the  auto- and crosscorrela- 
tions can be evaluated as follows: 
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Fig. 2. Normalized dc voltage and in-phase/out-of-phase RF voltages 
versus dc current (normalized). One expects Re (ULO) -+ i ~ o  and 
Im (ULO) -+ 0 at very  large dc bias. 

Here (12), (15), (16) are complex. The subscript P indicates 
that  the  correlations depend on the  period of Fourier trans- 
formation (=l/P). These quantities are the ones needed for 
the mixer noise analysis. 

For a given junction  and LO frequency, (udc) and ( u L 0 )  are 
functions of  bias currents idc, i L 0  ‘The dependence on dc 
bias is shown in Fig. 2 ,  where the quasi-periodic variation is a 
result of RF-induced Josephson steps. It is found  that  the  out- 
of-phase RF voltage or Im (uL0) does not vanish betweensteps, 
which differs from previously computed results in  the absence 
of  noise [14]. In  fact, it changes from inductive to capacitive 
as the bias  is increased from  the first step to the second. This 
is due to noise rounding or partial RF synchronization of the 
ac Josephson current off the steps. Another related result is 
that the noise correlation of the  dc  and out-of-phase RF 
voltage or Im ((6U&)(6uLO))p is  always near 100 percent be- 
tween steps whenever r < 0.1. These effects show that  the 
mixer characteristics are strongly influenced by  the nonlinear 
interaction  of noise. 

Once the  functions (udc) = f(idcr iL0) and (ULO) = gl (idc, iLo) t 
jg2(idc, iL0) are evaluated under various bias conditions,  one 
can compute  the modified I-V curves for  a  finite source im- 
pedance ZL0. The load  equations  for  the circuit on  the  left of 
Fig. 1 are 

f(idc, iL0)  rdcidc = US,dc (1 7) 

gl(idc, i L 0 )  +jg2(idc, iL0)  zLOiLO = uS,LO = IuS,LOIeie 

(1 8) 

0’ 01 I ,  I 
0.5 1.0 0 0.5 1.0 

DC VOLTAGE 

(a) (b) 
Fig. 3. Two series of I-V curves computed at ~ 2 ~ 0  = 0.4 and r = 

0.01 for different LO impedances (normalized) shown. In each 
case, the LO power is zero for the  top curve, then increases  toward 
lower curves. The inset shows the case of constant LO current for 
comparison. 

where rdc = Rdc/R, ZLO = ZLo/R, and US&, us,LO are nor- 
malized with respect to R I , .  For convenience, the phase  angle 
0 of the LO generator is adjusted such that iL0  is  real.  Given 
rdc,  zLo, I U S , L O ~ ,  and US,dc, the algebraic equations (17),  (18) 
can  be  solved graphically for 0,  idc, iLo, and, therefore (udc) = 
f(idcr iLo). The  provides a  point  for  the I- Vcurve. At a fixed 
LO power (constant I U S , L O ~ ) ,  the entire I-V curve can be 
generated by repeating the process with different values of 
US,&. The  Source resistance rdc does not affect the shape 
of the I-V curve except  for stability when there is a region of 
negative slope. Shown in Fig. 3 are two families of I- V curves 
computed  at various LO power  levels for two values  of zL0.  
The deviations from the well-known constant  current case 
(inset) are obvious. They are in good agreement with experi- 
mental curves and analog simulator results [ 9 ] .  When the RF 
termination is inductive as in Fig. 3(a), the  current iLo in- 
creases with dc bias between steps, resulting in a negative dif- 
ferential resistance. It can be stably biased only if r$ is larger 
than  the magnitude of the slope. On the  other  hand, if the RF 
termination is capacitive as in Fig. 3(b), i ~ o  decreases as the 
bias  voltage  is increased. In this case, the dynamic resistance 
between steps becomes much  lower, and the first step is re- 
duced appreciably. 

IV. CONVERSION AND NOISE-CORRELATION MATRICES 
Now we consider the mixer response to a small applied signal 

at  a normalized frequency %iw,/2eRIc = s lu  = slLo t s l o  
(upper sideband or usb), where s l o  << s l ~ o .  Based on the 
embedding circuit assumption, the  current generated by  the 
nonlinear Josephson element is only at  intermediate frequency 
(IF) s l o  and image frequency Rl = aL0 - s l o  (lower sideband 
or lsb), as shown on the right of  Fig. 1. The small-signal cur- 
rent is then 

iss(7) = (iue inur i;e-iaur ) .+ ( ioe jaQr  + i$e-jaQr ) 

t (ize iW i;”e-iazr7> (19) 

in normalized units. If  we add iss(7) to (5) as a  perturbation, 
the additional voltage (normalized) d&,(7)/d7 can be written 
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as 

u,s(7) = (vue U + (uoe 
i%T .+ UKe-i%T i % T  ,. u;e-inoT) 

t (uleinl' t u~e-'"'') t (higher sidebands). (20) 

Again  we may ignore higher sideband voltage at (252~0 k 
a0), * * , etc. There are, of course, noise components  at 
frequencies nu, no, and C l 1  arising from  fluctuations 6udc and 
6 ~ ~ 0 .  In the small-signal limit,  the relationship between uSs(7) 

and &(T) is linear and can  be described by  a 3 X 3 impedance 
matrix E] = kz; ;;; %] [;] +(noise) 

zuu zuo ZUI ill 

(2 1) 

or 

us = Z - is t &us. 
- - -.-. .., 

(22) 
AU the  matrix elements are normalized with respect to R. 
Since the  IF is much lower than signal frequency in practice, 
the  matrix  can be determined from  the pump solutions (udc) = 
f(idc, iLo), (uLo) =gl(idc,  iLo) + j g 2 ( i d c ,  i ~ o )  and their deriv- 
atives following a generalized mixer theory [ 15 J 

ZUU = - (-- 
2 aiLo 1LO 

(RF dynamic impedance) 

(23) 

(up-conversion) (24) 

Z,I = - 1 (- x u L o )  - (uL0) 
2 aiLo z) (image conversion) (25) 

(down-conversion) (26) 

a ( Ud,) 
zoo =- 

aid, 
(dc dynamic resistance) (27) 

and 

zo1 = zou, Zlu = Zul, ZlO = zuo , ZII = z:u (28) * * 
from symmetry. The second row  of the  matrix is  real  since 
iLo has a zero phase. In contrast to resistive mixers, the calcu- 
lated conversion matrix of a Josephson mixer is neither recip- 
rocal nor passive; therefore, conversion gain  is  possible. 

The impedance matrix depends on  the  junction parameters 
aL0, I', as well as on  the bias parameters id , ,  iLo. (Without 
loss of generality, the bias currents can be  used as a set of 
independent parameters instead of the  dc  and LO generator 
voltages.) A typical case is shown in Fig. 4, where the dc and 
RF dynamic impedance and the down-conversion impedance 
zou are plotted versus dc bias. All but  the RF resistance show 
a symmetric shape between the  zeroth and first induced steps. 
The mixer should be  biased halfway between the steps for  a 
maximum zou. If the noise parameter r is less than 0.1, 
zou is proportional to zoo as expected from earlier calculations 
[7] . In  addition,  the maximum zoo and zou are found to vary 

-2 
DC VOLTAGE 1 FIRST 

STEP 

Fig. 4. Elements of the conversion  matrix  (normalized .to . I ? )  a s  fwnu:- 
tions  of bias  voltage between  the  zeroth  and first Josephson steps. 
They  are  computed  for  the same  LO, r, and i L 0  a.s th.o!re in Fig. 2, 
but  for a more  limited  range of UdC 

10 I I I I I I I I I I l---r--r-- . 

0.11 ' 1 1 1 1  1 '  I ' 1 1  I 
/ 

0.001 0.01 0.1 1 
NOISE PARAMETER r 

Fig. 5 .  Conversion and  noise  matrix  elements versus  noise:  :para~mertt:r. 
All the  quantities  are  taken  at halfway between  the !first two stcqls, 
where the maximum values are insensitive to  i ~ o .  'The daslkled 
line  shows the spectral  density of thermal  noise withoult the icleal 
Josephson  element. 

as I'-ll2 at  a fixed aL0 [lo]  , as shown in Fig. .5.  ,4s I' -+ 1, 
however, down-conversion is much less effective hacause: of 
severe  noise rounding of the steps. 

In order to  express the noise components in (21) r:xplici,tly, 
we consider a very-long observation time T (normalized) ;jnd 
expand 6 udc, ~ U L O  in Fourier series [ 161 

aUdc = a,ei(2nn/T)7 
00 

n=-m 

6uLo = bnei(2n*/T)7 
m 

(29) , =-ea 
where a_, =a,* but b-, # b,*. If a normalized 'hand.vridth 
Af = l /Tis  used for  the mixer noise, we have 

(30) 
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for (22), where N satisfies 2nN/T = no. A noise correlation 
matrix can then be defined in terms of spectral densities 

s,, suo S U I  

$= so, so0 
- 1,. & ]  =2T(( ihs)  x 

[ 
2 T ( b ~ b & )  2T(bNa&) 2 T ( b ~ b - ~ )  

2 T ( b ? ~ b & )   2 T ( b _ * ~ a & >   2 T ( b _ * ~ b - ~ )  1 = 2 T ( a ~ b k >   2 T ( a ~ a & )   2 T ( a ~ b - ~ )  . (31) 

Since the  intermediate frequency no is much smaller than 
SZLO, only the low-freqgency spectra in (29) are of interest. 
In this case, the  matrix s" can  be evaluated from the  auto- and 
crosscorrelations given by (1 3)-( 16) [ 161 

s,, =SI, = 2P(puL$)p (32) 

SUI = SF, = 2P ((6UL0)2)P (34) 

suo =soI=s$, =s& =2P((6udc)(6uLO))p (33) 

SO0 = 2 P ( ( 6 U d ~ ) ~ ) p .  (3 5) 

The matrix s" is Hermitian and positive-definite with all the 
elements independent of P. 

When the ac Josephson current is not synchronized,  the 
noise spectral densities are much higher than  that  for thermal 
noise, S = 4 r  (6), in the absence of nonlinear Josephson ele- 
ment. This  is  also shown in Fig. 5, where Soo and S,, at half- 
way between the first two steps are plotted against the noise 
parameter I'. There exists an analytic model for such an 
"excess" noise in the presence of a large LO current [ 171 . It 
gives an expression 

so0 = 477 ( u d c )  (1 - ( u d c ) / n L O )  (36) 

for (udc )  between the  zeroth  and first steps. Similar to zou, Soo 
also has a maximum value (=nn~O)  at ( u d c )  = QL0/2. Our 
computed results check out very  well with (36) within the 
validity of  the analytic theory in which r < 0.1. One notices 
that  the voltage  noise stays  constant no  matter how small the 
driving  noise F is. This is consistent with  the observed  noise 
being much greater than thermal noise in a  lowresistance, high 
critical-current junction [ 181 . The calculation also shows that 
t_he cross correlations given by  the off-diagonal elements of 
s" are rather strong when' r << 1 and nL0 < 1 ,  

V. MIXER NOISE TEMPERATURE AND ITS OPTIMIZATION 
Knowing the embedding circuit at signal, IF, and image fre- 

quencies, mixer conversion efficiency and noise temperature 
can  be calculated from the conversion and noise correlation 
matrices [6]. The equations  for  the circuit on  the right  of 
Fig. 1 are 

or 
~ z u  
us t Z ,  . is = Gsig. 

?I 0 

1925 

Here usig = V,/Nc, and z,, zo , ZF are normalized to R. Matrix 
equations (22) and (38) can be solved for  the small-signal 
current - g = (2 4- ZJ1 ' (&ig - 6u,). 

z - 
(39) 

If we let 

(40) 

and 

y o  - = [;!I 
the  IF current is simply given by  the scalar equation 

The mean square IF current is, therefore, 

2(iOi$) = 21 ~ ~ , 1 ~ ( u ~ ~ ( ~  t 2YF * <($us) X (&s)T*) * Y$ 
=2)You121usig12 +(pr*s"* ?$)AX (43) 

Here (31) has been used for  a noise bandwidth Af = 1/T. 
Since the mixer conversion efficiency 7 is equal to the down- 
converted IF power divided by  the available  signal power, the 
signal term  in (43) gives 

In order to obtain  the mixer noise temperature TM, we let  the 
signal term equal the noise term in (43) and  substitute 2 I uSigl2 
with 4 Re (2,) rM Af where rM = 2 ekTMMIc 

Another parameter of importance is the IF output impedance 

zout = Y;; - 2 0 .  (46) 

For a double-sideband (DSB) mixer, z ,  = z,= zLo, it can  be 
shown that zout is  real. For a single-sideband (SSB) mixer, 
z ,  # 21, and zout is complex. In any case, zout is independent 
of zo. The IF load  should,  therefore, be conjugate matched 
for maximum conversion efficiency. That is, zo = z&,t, pro- 
vided that Re (zout) > 0. However, the  output impedance 
may have a negative  real part, such as the case in Fig. 3(a). 
Then the conversion efficiency is potentially unbounded. On 
the  contrary,  the mixer noise temperature is independent of 
zo and always  remains finite and continuous. Therefore, it is 
the purpose of our optimization to find the minimum mixer 
noise temperature under a variety of conditions. 

We first consider the dependence=of%TM/T on RF impedance 
z,, z ,  for  a given  pair of matrices Z, S. An example is shown 
in Fig. 6, where constant TM/T contours are plotted in a com- 
plex plane of signal impedance z, .  In both DSB and SSB 
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(b) 
Fig. 6.  Optimization of mixer noise temperature with respect to signal 

source  impedance at a  fixed bias, (I& = 0.16. Other parameters  are 
the same as in Fig.  2. The  dots indicate the signal impedances for 
minimum TM/T = 34 (DSB) and TM/T= 21 (SSB). For  the SSB  case 
in (b), the image impedance is fiied  at  its best value, 4j .  

cases,' minimum TM/T takes place outside a shaded region 
of  negative output resistance. Also shown in Fig. 6 are two 
dashed  curves for unity conversion efficiency assuming a 
matched IF load. Stable conversion gain  is obtained inside 
two moon-shape regions. The lowest noise temperature  for 
SSB  is appreciably better  than  that for DSB,  since the image 
impedance zz can  be  varied independently in the former case. 
The best image termination is always reactive and close to an 
open circuit.  A  short circuit at  the image frequency usually 
results in a large  noise temperature. 

Optimization with respect to RF terminations is repeated for 
different matrices to obtain minimum TM/T as a  function of 
dc bias between the first two steps. A typical case  is shown 
in Fig. 7, where the corresponding conversion efficiency is 
also plotted. Here the mixer is  very noisy near either step, and 
the best bias is slightly below the voltage midway between the 
steps. In general, the bias  voltage for maximum conversion 
efficiency does not coincide with that  for lowest mixer noise 
temperature. Bias beyond  the first Josephson step has also 
been explored, but the result is not as good. For a given 
junction (fixed nL0 and r), the minimum TM/T is rather 
insensitive to LO current (iLo), provided that  a significant 
fraction of the zero-voltage current is suppressed by  the LO 

lThe  terms DSB and SSB used in  this paper are referring only to  the 
input terminations of the mixer or receiver. All the conversion effi- 
ciency and noise temperature are for  the  detection of a narrow-band 
signal on  one side of the LO, rather  than  for  the figures inferred from 
a  broad-band  radiometric  measurement. 

0-0 0 0.2 

DC VOLTAGE 
0.4 

Fig. 7. Mixer noise temperature (solid curves) and  corresponding  con- 
version efficiency (dashed curves) versus dc bias. The  optimum signal/ 
image impedances for each bias are  determined individually following 
a  procedure similar to Fig. 6. The parameters 0 ~ 0  = 0.4, r = 0.01, 
i L 0  = 0.45 are  the same as in Fig. 2. At  the bias voltage where TM/T 
is lowest, the IF output impedances (normalized) are zout = 3.0 for 
DSB, and zout = LO\+  1.6j  for SSB. 

power like the cases in Fig. 3. At a  much higher LO power, 
however, the mixer performance does degrade. 

The minimum TM/T can be obtained under different opti- 
mum bias for  a variety of junction parameters I" and nL0. 
The result is shown in Fig. 8 versus  noise parameter r for two 
of the normalized frequencies studied. Also shown, in broken 
lines, are the corresponding conversion efficiencies. At a fixed 
normalized frequency, the mixer noise temperature divided 
by  the ambient temperature is lowest around l7 = 0.1, where 
9 - 0.3. It arises from  two opposing effects: larger  "excess" 
noise with - respect ~~ to thermal noise at I" << 1, and severe  noise 
saturation when I" + 1. Such a minimum figure  of TM/T im- 
proves significantly toward lower values of nL0. In particular, 
the  theory predicts that a mixer noise temperature as low as 
five times the ambient temperature can  be  achieved in an SSB 
mixer at nL0 = 0.2. 

The sensitivity of a millimeter-wave heterodyne receiver  is 
limited not only by  the noise in  the mixer but also by  the 
noise in the following IF amplifier. The total receiver  noise 
temperature  with respect to the ambient temperature is 

TR/T= TM/T+  (~/??)(TA/T) (47) 

where TA is the amplifier noise temperature.  Its  contribution 
depends on the value of conversion efficiency. Since mini- 
mum TM/T does not take place at maximum ??, one must carry 
out  the  optimization  for TR /T also.  Assuming a TA /T  equal 
to 5 ,  which can be achieved by  a cooled FET amplifier when 
T - 4 K, we obtain minimum receiver  noise contours in an 
nL0 -I' plane as shown in Fig. 9. The results are calculated for 
DSB and SSB  receivers under the restriction Re(zOut) > 0 
and with  a  matched IF load. For  a fixed normalized fre- 
quency, lowest T R ~ T  is found  at  a noise parameter between 
0.02 and 0.05. This is shifted from r -  0.1 for minimum 
TM/T toward a higher conversion efficiency. A comparison 
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Fig. 8. DSB/SSB mixer noise temperature (solid) at best  bias  and  corre- 
sponding  conversion efficiency (dashed)  versus noise parameter for 
two normalized frequencies shown. The output resistance becomes 
negative and q is unbounded below r 2ekT/fiI, FZ 0.006 when 
nL0 + i i ~ ~ 0 / 2 e R I ,  = 0.4. There  is no such  divergence for  LO = 
0.2 over the range of parameter studied. 
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Fig. 9. Constant DSB and SSB receiver noise temperature contours 
in a plane of normalized frequency-noise parameter.  Each  number 
represents the best figure that can  be  achieved theoretically for a 
given junction.  The IF output resistance is positive and  matched 
throughout all cases. Here r = 2ekT/fiIc, and   LO =Rw~0/2eRI,. 

between Fig.  9(a) and (b) shows that  an SSB receiver is better 
than  a DSB receiver at the same S ~ L O  and  by  an average 
factor of one and  a half. The prediction that an SSB Josephson 

receiver at SILo = 0.2 can  have TR /T  less than  20 over a wide 
range of I’ is very encouraging. 

VI. DISCUSSION AND CONCLUSION 
Although there are fundamental differences between a 

Josephson mixer and a conventional resistive mixer, we have 
generalized the classical mixer theory in order to include such 
effects as conversion gain, negative resistance, noise saturation, 
and correlation.  The analysis can be  extended to other non- 
linear Josephson devices  as  well. For example, we have ex- 
amined a few  cases for parametric amplification when the 
RF input impedance has a negative  real part. The amplifier 
operates either with  one idler at the image frequency or with 
two idlers at  both  the image and  the difference frequencies. 
It is found that the noise temperature at a  finite voltage  is 
much worse than  that of a mixer at  the same bias. The range 
of parameters for such a parametric amplifier is also very 
restricted. Another device of interest is a harmonic mixer 
which can be studied following a similar approach. 

Previous experimental data  on millimeter-wave Josephson 
mixers [1]-[3] have shown a noise temperature T M / T =  20-50 
with  a conversion efficiency 7) = 0.5-1.3 at a normalized fre- 
quency SILo = 0.3-0.4 and  a noise parameter r = 0.01 or less. 
They are in good agreement with  the  computed results. The 
theory also predicts that significant improvement is possible 
if a hysteresis-free junction can be made with  a low critical 
current  and  a  moderately high RI, product. Specifically, for 
an Rl, product equal to  one-half of the niobium energy gap 
or  1 mV and  an I, = 10 pA at T = 4.2 K, the noise temperature 
of  an SSB Josephson receiver at 100 GHz would be as low 
as TR = 70 K, provided that TA = 20 K for the IF amplifier. 
A single-sideband configuration can  be  realized  using a reactive 
narrow-band filter in front of the mixer. It has an additional 
advantage that  the background noise contribution to the 
system is reduced by a  factor  of  two. 

In the beginning of the analysis, it is  assumed that  the spec- 
tral density of thermal noise is kT at all frequencies. The 
assumption breaks down in the  quantum  limit  at  a frequency 
higher than kT/h [lo] , or approximately 100 GHz at T = 4.2 K. 
In  the limit when WLO = kTP,  the extra photon noise at 
frequencies beyond WLO does not have a very strong effect 
on the mixer since the noise components  in Fig. 5 are prac- 
tically independent of r. However, as the ambient temperature 
is reduced such that kT << %zwLo, one can no longer expect 
TM to improve with T In order to explore such a  transition 
into quantum  limit,  the noise term in (4) must satisfy a  non- 
uniform spectrum  for  quantum fluctuations. This can  be 
simulated in computer calculations with  a series  of properly 
correlated random numbers in  the time domain. 

In conclusion, we have carried out a complete numerical 
characterization as  well  as optimization  for  a Josephson- 
junction mixer. A nonlinear pump equation based  on the RSJ 
model with thermal noise is  solved in the time domain to ob- 
tain  a conversion matrix and a noise correlation matrix. These 
matrices are then used in the frequency domain to calculate 
the noise temperature and conversion efficiency. Optimization 
is made in  a multiparameter space to find  the  best mixer and 
receiver performance. The prediction from the analysis  is  very 
promising and may be  realized  using high-quality junctions. 
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Abstract-A unified theory of the singly and  doubly degenerate 
Josephson-junction  parametric  amplifier is presented.  Experimentswith 
single junctions  on  both amplifier  modes at frequencies 10,35,  and 70 
GHz are  discussed.  Low-noise  temperature (-100 K, single sideband 
(SSB)) and  reasonable  gain (-8 dB)  were  obtained at 35 GHz in the 
singly degenerate  mode.  On the basis of the  theory  and experiments, 
a general  procedure for optimizing junction  parameters is discussed  and 
illustrated  by  the specific design of a 100-GHz amplifier. 
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P 
I. INTRODUCTION 

ARAMETRIC  AMPLIFICATION  based on external  mod- 
ulation of the nonlinear  Josephson inductance has  been 

studied for almost a decade [l] 4141. The  efforts have  been 
devoted  mainly to  two  different single-idler modes.  The doubly 
degenerate amplifier (DDA) first suggested  by Parrish et ul. 
[l] uses a single  matching circuit  centered  at  the  pump  fre- 
quency fp . The dominant idler is at  the frequency fi = 2 fp - 
f,, where f, is the signal frequency. In the DDA  maximum 
gain  occurs at f, -fi .v fp. It has  been standard to operate the 
DDA at zero dc-bias current where the  nonlinearity is  of  second 
order  (the leading term of the Josephson inductance is at 2 fp). 
The doubly degenerate  mode  has  been thoroughly studied at 
X band by Feldman et ul. [2] , and  by Wahlsten et ul. [3] , and 
at Ku band by Taur  and  Richards [4], and  Goodall et al. [SI. 
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